Sums and Generating Functions of Squares of Generalized Tribonacci Polynomials: Closed Formulas of $\sum_{k=0}^{n} z^{k} W_{k}^{2}$ and $\sum_{n=0}^{\infty} W_{n}^{2} z^{n}$

Yüksel Soykan

> Department of Mathematics,
> Faculty of Science, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey e-mail: yuksel_soykan@hotmail.com

Abstract

In this paper, the closed forms of the sum formulas $\sum_{k=0}^{n} z^{k} W_{k}^{2}, \sum_{k=0}^{n} z^{k} W_{k+1} W_{k}$ and $\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}$ for the generalized Tribonacci polynomials are presented. We also present the closed forms of formulas of generating functions $\sum_{n=0}^{\infty} W_{n}^{2} z^{n}, \sum_{n=0}^{\infty} W_{n+1} W_{n} z^{n}$ and $\sum_{n=0}^{\infty} W_{n+2} W_{n} z^{n}$.

2020 Mathematics Subject Classification. 11B37, 11B39, 11B83. Keywords. Sums of squares, third order recurrence, Tribonacci polynomials, Padovan polynomials, Perrin polynomials, Narayana polynomials, Tribonacci numbers, Padovan numbers, Perrin numbers, Narayana numbers.

1. Introduction

The generalized Tribonacci polynomials (or generalized $(r(x), s(x), t(x))$-Tribonacci polynomials or x-Tribonacci numbers or generalized $(r(x), s(x), t(x))$-polynomials or 3 -step Fibonacci polynomials)

$$
\left\{W_{n}\left(W_{0}(x), W_{1}(x), W_{2}(x) ; r(x), s(x), t(x)\right)\right\}_{n \geq 0}
$$

(or $\left\{W_{n}(x)\right\}_{n \geq 0}$ or shortly $\left\{W_{n}\right\}_{n \geq 0}$) is defined as follows:

$$
\begin{equation*}
W_{n}(x)=r(x) W_{n-1}(x)+s(x) W_{n-2}(x)+t(x) W_{n-3}(x), \quad W_{0}(x)=a(x), W_{1}(x)=b(x), W_{2}(x)=c(x), \quad n \geq 3 \tag{1.1}
\end{equation*}
$$

where $W_{0}(x), W_{1}(x), W_{2}(x)$ are arbitrary complex (or real) polynomials with real coefficients and $r(x), s(x)$ and $t(x)$ are polynomials with real coefficients and $t(x) \neq 0$.

Special cases of this sequence has been studied by many authors. For some references on special cases of generalized Tribonacci polynomials, see for example $[1,2,3,4,5]$.

[^0]The sequence $\left\{W_{n}\right\}_{n \geq 0}$ can be extended to negative subscripts by defining

$$
W_{-n}(x)=-\frac{s(x)}{t(x)} W_{-(n-1)}(x)-\frac{r(x)}{t(x)} W_{-(n-2)}(x)+\frac{1}{t(x)} W_{-(n-3)}(x)
$$

for $n=1,2,3, \ldots$ when $t(x) \neq 0$. Therefore, recurrence (1.1) holds for all integers n. Note that for $n \geq 1$, $W_{-n}(x)$ need not to be a polynomial in the ordinary sense.

Binet's formula of generalized Tribonacci polynomials, as $\left\{W_{n}\right\}$ is a third-order recurrence sequence (difference equation), can be calculated using its characteristic equation which is given as

$$
\begin{equation*}
z^{3}-r(x) z^{2}-s(x) z-t(x)=0 \tag{1.2}
\end{equation*}
$$

The roots of characteristic equation of $\left\{W_{n}\right\}$ will be denoted as $\alpha(x)=\alpha(x, r, s, t), \beta(x)=\beta(x, r, s, t), \gamma(x)=$ $\gamma(x, r, s, t)$.

Remark 1.1. For the sake of simplicity throughout the rest of the paper, we use

$$
W_{n}, r, s, t, W_{0}, W_{1}, W_{2}, \alpha, \beta, \gamma
$$

instead of

$$
W_{n}(x), r(x), s(x), t(x), W_{0}(x), W_{1}(x), W_{2}(x), \alpha(x), \beta(x), \gamma(x),
$$

respectively, unless otherwise stated. For example, we write

$$
W_{n}=r W_{n-1}+s W_{n-2}+t W_{n-3}, \quad W_{0}=a, W_{1}=b, W_{2}=c, \quad n \geq 3
$$

for the equation (1.1).

Theorem 1.2. [5, Theorem 6] Binet's formula of generalized Tribonacci polynomials is given as follows according to the roots of characteristic equation (1.2):
(a): (Three Distinct Roots Case: $\alpha \neq \beta \neq \gamma)$

$$
\begin{aligned}
W_{n}= & \frac{W_{2}-(\beta+\gamma) W_{1}+\beta \gamma W_{0}}{(\alpha-\beta)(\alpha-\gamma)} \alpha^{n}+\frac{W_{2}-(\alpha+\gamma) W_{1}+\alpha \gamma W_{0}}{(\beta-\alpha)(\beta-\gamma)} \beta^{n} \\
& +\frac{W_{2}-(\alpha+\beta) W_{1}+\alpha \beta W_{0}}{(\gamma-\alpha)(\gamma-\beta)} \gamma^{n},
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
W_{n}= & \frac{\left(\alpha W_{2}+\alpha(-r+\alpha) W_{1}+t W_{0}\right)}{r \alpha^{2}+2 s \alpha+3 t} \alpha^{n}+\frac{\left(\beta W_{2}+\beta(-r+\beta) W_{1}+t W_{0}\right)}{r \beta^{2}+2 s \beta+3 t} \beta^{n} \\
& +\frac{\left(\gamma W_{2}+\gamma(-r+\gamma) W_{1}+t W_{0}\right)}{r \gamma^{2}+2 s \gamma+3 t} \gamma^{n} .
\end{aligned}
$$

(b): (Two Distinct Roots Case: $\alpha \neq \beta=\gamma)$

$$
\begin{aligned}
& W_{n}=\frac{W_{2}-2 \beta W_{1}+\beta^{2} W_{0}}{(\beta-\alpha)^{2}} \alpha^{n}+\left(\frac{-W_{2}+2 \beta W_{1}-\alpha(2 \beta-\alpha) W_{0}}{(\beta-\alpha)^{2}}+\frac{W_{2}-(\beta+\alpha) W_{1}+\beta \alpha W_{0}}{\beta(\beta-\alpha)} n\right) \beta^{n} \\
& \quad \\
& \quad \text {.e., }
\end{aligned}
$$

$$
\begin{aligned}
W_{n}= & \frac{4 W_{2}-4(r-\alpha) W_{1}+(r-\alpha)^{2} W_{0}}{(r-3 \alpha)^{2}} \alpha^{n} \\
& +\frac{1}{\beta(r-3 \beta)^{2}}\left(\left(-\beta W_{2}+2 \beta^{2} W_{1}+\left(2 r \beta^{2}+\left(r^{2}+8 s\right) \beta+8 t\right) W_{0}\right)\right. \\
& \left.+\left((3 \beta-r) W_{2}-(r-3 \beta)(\beta-r) W_{1}-\left(r \beta^{2}+\left(r^{2}+6 s\right) \beta+6 t\right) W_{0}\right) n\right) \beta^{n} .
\end{aligned}
$$

(c): (Single Root Case: $\alpha=\beta=\gamma=\frac{r}{3}$)

$$
\begin{aligned}
W_{n} & =\frac{1}{2}\left(2 \alpha^{2} W_{0}+\left(-W_{2}+4 W_{1} \alpha-3 W_{0} \alpha^{2}\right) n+\left(W_{2}-2 W_{1} \alpha+W_{0} \alpha^{2}\right) n^{2}\right) \alpha^{n-2} \\
& =\frac{1}{2}\left(n(n-1) W_{2}-2 n(n-2) \alpha W_{1}+(n-1)(n-2) \alpha^{2} W_{0}\right) \alpha^{n-2} \\
& =\frac{1}{18}\left(9 n(n-1) W_{2}-6 n(n-2) r W_{1}+(n-1)(n-2) r^{2} W_{0}\right)\left(\frac{r}{3}\right)^{n-2}
\end{aligned}
$$

2. Sum Formulas

In this section, we present the closed forms of the sum formulas $\sum_{k=0}^{n} z^{k} W_{k}^{2}, \sum_{k=0}^{n} z^{k} W_{k+1} W_{k}$ and $\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}$ for the generalized Tribonacci polynomials.

Theorem 2.1. Let z be a real or complex number. Then
(a):
(i): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=-z^{6} t^{4}+z^{5} t^{2}\left(s^{2}-\right.$ $r t)+z^{4} t\left(r^{2} t-r s^{2}-s t\right)+z^{3}\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)+z^{2}\left(r^{2} s+s^{2}+r t\right)+z\left(s+r^{2}\right)-1 \neq 0$ then

$$
\begin{equation*}
\sum_{k=0}^{n} z^{k} W_{k}^{2}=\frac{\Theta_{1 W}(z)}{\Gamma(z)} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Theta_{1 W}(z)=-z^{n+6} \Theta_{1}-z^{n+5} \Theta_{2}-z^{n+4} \Theta_{3}+z^{n+3} \Theta_{4}+z^{n+2} \Theta_{5}+z^{n+1} \Theta_{6}+z^{5} \Theta_{7}+z^{4} \Theta_{8}+z^{3} \Theta_{9}+ \\
& z^{2} \Theta_{10}+z \Theta_{11}+\Theta_{12} \\
& =-z^{n+6} t^{2}\left(W_{n+3}^{2}+r^{2} W_{n+2}^{2}+s^{2} W_{n+1}^{2}+2\left(-r W_{n+2} W_{n+3}-s W_{n+1} W_{n+3}+r s W_{n+1} W_{n+2}\right)\right)- \\
& z^{n+5} t\left(r W_{n+3}^{2}+\left(r^{3}+2 r s+t\right) W_{n+2}^{2}+r\left(r t-s^{2}\right) W_{n+1}^{2}+2\left(-\left(s+r^{2}\right) W_{n+3}+\left(s^{2}-t r\right) W_{n+1}\right) W_{n+2}\right)- \\
& z^{n+4}\left(s W_{n+3}^{2}+r(t+r s) W_{n+2}^{2}+\left(r^{3} t-s^{3}+t^{2}+4 r s t\right) W_{n+1}^{2}+2\left(-r s W_{n+2} W_{n+3}-s t W_{n+1} W_{n+2}-\right.\right. \\
& \left.\left.r t W_{n+1} W_{n+3}\right)\right) \\
& +z^{n+3}\left(W_{n+3}^{2}-\left(s+r^{2}\right) W_{n+2}^{2}-\left(r^{2} s+r t+s^{2}\right) W_{n+1}^{2}\right)+z^{n+2}\left(W_{n+2}^{2}-\left(s+r^{2}\right) W_{n+1}^{2}\right)+z^{n+1} W_{n+1}^{2}+ \\
& z^{5} t^{2}\left(-W_{2}+r W_{1}+s W_{0}\right)^{2}+z^{4} t\left(r W_{2}^{2}+\left(t+2 r s+r^{3}\right) W_{1}^{2}+r\left(r t-s^{2}\right) W_{0}^{2}-2\left(s+r^{2}\right) W_{1} W_{2}-2(r t-\right. \\
& \left.\left.s^{2}\right) W_{0} W_{1}\right)+z^{3}\left(s W_{2}^{2}+r(t+r s) W_{1}^{2}+\left(r^{3} t-s^{3}+t^{2}+4 r s t\right) W_{0}^{2}-2 r s W_{1} W_{2}-2 r t W_{0} W_{2}-2 s t W_{0} W_{1}\right) \\
& +z^{2}\left(-W_{2}^{2}+\left(r^{2}+s\right) W_{1}^{2}+s\left(s+r^{2}\right) W_{0}^{2}+r t W_{0}^{2}\right)+z\left(-W_{1}^{2}+\left(r^{2}+s\right) W_{0}^{2}\right)-W_{0}^{2}
\end{aligned}
$$

(ii): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right) f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{equation*}
\sum_{k=0}^{n} z^{k} W_{k}^{2}=\frac{\frac{d}{d z} \Theta_{1 W}(z)}{\frac{d}{d z} \Gamma(z)} \tag{2.2}
\end{equation*}
$$

where
$\frac{d}{d z} \Theta_{1 W}(z)=-(n+6) z^{n+5} t^{2}\left(W_{n+3}^{2}+r^{2} W_{n+2}^{2}+s^{2} W_{n+1}^{2}+2\left(-r W_{n+2} W_{n+3}-s W_{n+1} W_{n+3}+\right.\right.$ $\left.\left.r s W_{n+1} W_{n+2}\right)\right)-(n+5) z^{n+4} t\left(r W_{n+3}^{2}+\left(r^{3}+2 r s+t\right) W_{n+2}^{2}+r\left(r t-s^{2}\right) W_{n+1}^{2}+2\left(-\left(s+r^{2}\right) W_{n+3}+\right.\right.$ $\left.\left.\left(s^{2}-t r\right) W_{n+1}\right) W_{n+2}\right)-(n+4) z^{n+3}\left(s W_{n+3}^{2}+r(t+r s) W_{n+2}^{2}+\left(r^{3} t-s^{3}+t^{2}+4 r s t\right) W_{n+1}^{2}+\right.$ $\left.2\left(-r s W_{n+2} W_{n+3}-s t W_{n+1} W_{n+2}-r t W_{n+1} W_{n+3}\right)\right)$
$+(n+3) z^{n+2}\left(W_{n+3}^{2}-\left(s+r^{2}\right) W_{n+2}^{2}-\left(r^{2} s+r t+s^{2}\right) W_{n+1}^{2}\right)+(n+2) z^{n+1}\left(W_{n+2}^{2}-\left(s+r^{2}\right) W_{n+1}^{2}\right)+$ $(n+1) z^{n} W_{n+1}^{2}+5 z^{4} t^{2}\left(-W_{2}+r W_{1}+s W_{0}\right)^{2}+4 z^{3} t\left(r W_{2}^{2}+\left(t+2 r s+r^{3}\right) W_{1}^{2}+r\left(r t-s^{2}\right) W_{0}^{2}-\right.$ $\left.2\left(s+r^{2}\right) W_{1} W_{2}-2\left(r t-s^{2}\right) W_{0} W_{1}\right)+3 z^{2}\left(s W_{2}^{2}+r(t+r s) W_{1}^{2}+\left(r^{3} t-s^{3}+t^{2}+4 r s t\right) W_{0}^{2}-\right.$ $\left.2 r s W_{1} W_{2}-2 r t W_{0} W_{2}-2 s t W_{0} W_{1}\right)$
$+2 z\left(-W_{2}^{2}+\left(r^{2}+s\right) W_{1}^{2}+s\left(s+r^{2}\right) W_{0}^{2}+r t W_{0}^{2}\right)+\left(-W_{1}^{2}+\left(r^{2}+s\right) W_{0}^{2}\right)$
and
$\frac{d}{d z} \Gamma(z)=-6 z^{5} t^{4}+5 z^{4} t^{2}\left(s^{2}-r t\right)+4 z^{3} t\left(r^{2} t-r s^{2}-s t\right)+3 z^{2}\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)+2 z\left(r^{2} s+\right.$ $\left.s^{2}+r t\right)+\left(s+r^{2}\right)$
(iii): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{2} f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{equation*}
\sum_{k=0}^{n} z^{k} W_{k}^{2}=\frac{\frac{d^{2}}{d z^{2}} \Theta_{1 W}(z)}{\frac{d^{2}}{d z^{2}} \Gamma(z)} \tag{2.3}
\end{equation*}
$$

where
$\frac{d^{2}}{d z^{2}} \Theta_{1 W}(z)=-(n+6)(n+5) z^{n+4} t^{2}\left(W_{n+3}^{2}+r^{2} W_{n+2}^{2}+s^{2} W_{n+1}^{2}+2\left(-r W_{n+2} W_{n+3}-s W_{n+1} W_{n+3}+\right.\right.$ $\left.\left.r s W_{n+1} W_{n+2}\right)\right)-(n+5)(n+4) z^{n+3} t\left(r W_{n+3}^{2}+\left(r^{3}+2 r s+t\right) W_{n+2}^{2}+r\left(r t-s^{2}\right) W_{n+1}^{2}+2(-(s+\right.$ $\left.\left.\left.r^{2}\right) W_{n+3}+\left(s^{2}-t r\right) W_{n+1}\right) W_{n+2}\right)$ $-(n+4)(n+3) z^{n+2}\left(s W_{n+3}^{2}+r(t+r s) W_{n+2}^{2}+\left(r^{3} t-s^{3}+t^{2}+4 r s t\right) W_{n+1}^{2}+2\left(-r s W_{n+2} W_{n+3}-\right.\right.$ $\left.\left.s t W_{n+1} W_{n+2}-r t W_{n+1} W_{n+3}\right)\right)+(n+3)(n+2) z^{n+1}\left(W_{n+3}^{2}-\left(s+r^{2}\right) W_{n+2}^{2}-\left(r^{2} s+r t+\right.\right.$ $\left.\left.s^{2}\right) W_{n+1}^{2}\right)+(n+2)(n+1) z^{n}\left(W_{n+2}^{2}-\left(s+r^{2}\right) W_{n+1}^{2}\right)+(n+1) n z^{n-1} W_{n+1}^{2}$
$+20 z^{3} t^{2}\left(-W_{2}+r W_{1}+s W_{0}\right)^{2}+12 z^{2} t\left(r W_{2}^{2}+\left(t+2 r s+r^{3}\right) W_{1}^{2}+r\left(r t-s^{2}\right) W_{0}^{2}-2\left(s+r^{2}\right) W_{1} W_{2}-\right.$ $\left.2\left(r t-s^{2}\right) W_{0} W_{1}\right)+6 z\left(s W_{2}^{2}+r(t+r s) W_{1}^{2}+\left(r^{3} t-s^{3}+t^{2}+4 r s t\right) W_{0}^{2}-2 r s W_{1} W_{2}-2 r t W_{0} W_{2}-\right.$ $\left.2 s t W_{0} W_{1}\right)+2\left(-W_{2}^{2}+\left(r^{2}+s\right) W_{1}^{2}+s\left(s+r^{2}\right) W_{0}^{2}+r t W_{0}^{2}\right)$
and
$\frac{d^{2}}{d z^{2}} \Gamma(z)=-30 z^{4} t^{4}+20 z^{3} t^{2}\left(s^{2}-r t\right)+12 z^{2} t\left(r^{2} t-r s^{2}-s t\right)+6 z\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)+$ $2\left(r^{2} s+s^{2}+r t\right)$
(iv): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{3} f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{align*}
\sum_{k=0}^{n} z^{k} W_{k}^{2} & =\frac{\frac{d^{3}}{d z^{3}} \Theta_{1 W}(z)}{\frac{d^{3}}{d z^{3}} \Gamma(z)} \tag{2.4}\\
& =\frac{\frac{d^{3}}{d z^{3}} \Theta_{1 W}(z)}{-120 z^{3} t^{4}+60 z^{2} t^{2}\left(s^{2}-r t\right)+24 z t\left(r^{2} t-r s^{2}-s t\right)+6\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)}
\end{align*}
$$

where

$$
\begin{aligned}
& \frac{d^{3}}{d z^{3}} \Theta_{1 W}(z)=-(n+4)(n+5)(n+6) z^{n+3} t^{2}\left(W_{n+3}^{2}+r^{2} W_{n+2}^{2}+s^{2} W_{n+1}^{2}+2\left(-r W_{n+2} W_{n+3}-\right.\right. \\
& \left.\left.s W_{n+1} W_{n+3}+r s W_{n+1} W_{n+2}\right)\right)-(n+3)(n+4)(n+5) z^{n+2} t\left(r W_{n+3}^{2}+\left(r^{3}+2 r s+t\right) W_{n+2}^{2}+\right. \\
& \left.r\left(r t-s^{2}\right) W_{n+1}^{2}+2\left(-\left(s+r^{2}\right) W_{n+3}+\left(s^{2}-t r\right) W_{n+1}\right) W_{n+2}\right) \\
& -(n+2)(n+3)(n+4) z^{n+1}\left(s W_{n+3}^{2}+r(t+r s) W_{n+2}^{2}+\left(r^{3} t-s^{3}+t^{2}+4 r s t\right) W_{n+1}^{2}+2\left(-r s W_{n+2} W_{n+3}-\right.\right. \\
& \left.\left.s t W_{n+1} W_{n+2}-r t W_{n+1} W_{n+3}\right)\right)+(n+1)(n+2)(n+3) z^{n}\left(W_{n+3}^{2}-\left(s+r^{2}\right) W_{n+2}^{2}-\left(r^{2} s+r t+\right.\right. \\
& \left.\left.s^{2}\right) W_{n+1}^{2}\right)+n(n+1)(n+2) z^{n-1}\left(W_{n+2}^{2}-\left(s+r^{2}\right) W_{n+1}^{2}\right)+(n-1) n(n+1) z^{n-2} W_{n+1}^{2} \\
& +60 z^{2} t^{2}\left(-W_{2}+r W_{1}+s W_{0}\right)^{2}+24 z t\left(r W_{2}^{2}+\left(t+2 r s+r^{3}\right) W_{1}^{2}+r\left(r t-s^{2}\right) W_{0}^{2}-2\left(s+r^{2}\right) W_{1} W_{2}-\right. \\
& \left.2\left(r t-s^{2}\right) W_{0} W_{1}\right)+6\left(s W_{2}^{2}+r(t+r s) W_{1}^{2}+\left(r^{3} t-s^{3}+t^{2}+4 r s t\right) W_{0}^{2}-2 r s W_{1} W_{2}-2 r t W_{0} W_{2}-\right. \\
& \left.2 s t W_{0} W_{1}\right) \\
& a n d \\
& \frac{d^{3}}{d z^{3}} \Gamma(z)=-120 z^{3} t^{4}+60 z^{2} t^{2}\left(s^{2}-r t\right)+24 z t\left(r^{2} t-r s^{2}-s t\right)+6\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)
\end{aligned}
$$

(\mathbf{v}): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{4} f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{align*}
\sum_{k=0}^{n} z^{k} W_{k}^{2} & =\frac{\frac{d^{4}}{d z^{4}} \Theta_{1 W}(z)}{\frac{d^{4}}{d z^{4}} \Gamma(z)} \tag{2.5}\\
& =\frac{\frac{d^{4}}{d z^{4}} \Theta_{1 W}(z)}{-360 z^{2} t^{4}+120 z t^{2}\left(s^{2}-r t\right)+24 t\left(r^{2} t-r s^{2}-s t\right)}
\end{align*}
$$

$$
\begin{aligned}
& \text { where } \\
& \frac{d^{4}}{d z^{4}} \Theta_{1 W}(z)=-(n+3)(n+4)(n+5)(n+6) z^{n+2} t^{2}\left(W_{n+3}^{2}+r^{2} W_{n+2}^{2}+s^{2} W_{n+1}^{2}+2\left(-r W_{n+2} W_{n+3}-\right.\right. \\
& \left.\left.s W_{n+1} W_{n+3}+r s W_{n+1} W_{n+2}\right)\right)-(n+2)(n+3)(n+4)(n+5) z^{n+1} t\left(r W_{n+3}^{2}+\left(r^{3}+2 r s+t\right) W_{n+2}^{2}+\right. \\
& \left.r\left(r t-s^{2}\right) W_{n+1}^{2}+2\left(-\left(s+r^{2}\right) W_{n+3}+\left(s^{2}-t r\right) W_{n+1}\right) W_{n+2}\right) \\
& -(n+1)(n+2)(n+3)(n+4) z^{n}\left(s W_{n+3}^{2}+r(t+r s) W_{n+2}^{2}+\left(r^{3} t-s^{3}+t^{2}+4 r s t\right) W_{n+1}^{2}+\right. \\
& \left.2\left(-r s W_{n+2} W_{n+3}-s t W_{n+1} W_{n+2}-r t W_{n+1} W_{n+3}\right)\right)+n(n+1)(n+2)(n+3) z^{n-1}\left(W_{n+3}^{2}-(s+\right. \\
& \left.\left.r^{2}\right) W_{n+2}^{2}-\left(r^{2} s+r t+s^{2}\right) W_{n+1}^{2}\right)+(n-1) n(n+1)(n+2) z^{n-2}\left(W_{n+2}^{2}-\left(s+r^{2}\right) W_{n+1}^{2}\right)+(n- \\
& 2)(n-1) n(n+1) z^{n-3} W_{n+1}^{2}
\end{aligned}
$$

$+120 z t^{2}\left(-W_{2}+r W_{1}+s W_{0}\right)^{2}+24 t\left(r W_{2}^{2}+\left(t+2 r s+r^{3}\right) W_{1}^{2}+r\left(r t-s^{2}\right) W_{0}^{2}-2\left(s+r^{2}\right) W_{1} W_{2}-\right.$ $\left.2\left(r t-s^{2}\right) W_{0} W_{1}\right)$
and
$\frac{d^{4}}{d z^{4}} \Gamma(z)=-360 z^{2} t^{4}+120 z t^{2}\left(s^{2}-r t\right)+24 t\left(r^{2} t-r s^{2}-s t\right)$
($\mathbf{v i}$): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{5} f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{align*}
\sum_{k=0}^{n} z^{k} W_{k}^{2} & =\frac{\frac{d^{5}}{d z^{5}} \Theta_{1 W}(z)}{\frac{d^{5}}{d z^{5}} \Gamma(z)} \tag{2.6}\\
& =\frac{\frac{d^{5}}{d z^{5}} \Theta_{1 W}(z)}{-720 z t^{4}+120 t^{2}\left(s^{2}-r t\right)}
\end{align*}
$$

where
$\frac{d^{5}}{d z^{5}} \Theta_{1 W}(z)=-(n+2)(n+3)(n+4)(n+5)(n+6) z^{n+1} t^{2}\left(W_{n+3}^{2}+r^{2} W_{n+2}^{2}+s^{2} W_{n+1}^{2}+\right.$ $\left.2\left(-r W_{n+2} W_{n+3}-s W_{n+1} W_{n+3}+r s W_{n+1} W_{n+2}\right)\right)-(n+1)(n+2)(n+3)(n+4)(n+5) z^{n} t\left(r W_{n+3}^{2}+\right.$ $\left.\left(r^{3}+2 r s+t\right) W_{n+2}^{2}+r\left(r t-s^{2}\right) W_{n+1}^{2}+2\left(-\left(s+r^{2}\right) W_{n+3}+\left(s^{2}-t r\right) W_{n+1}\right) W_{n+2}\right)$
$-n(n+1)(n+2)(n+3)(n+4) z^{n-1}\left(s W_{n+3}^{2}+r(t+r s) W_{n+2}^{2}+\left(r^{3} t-s^{3}+t^{2}+4 r s t\right) W_{n+1}^{2}+\right.$ $\left.2\left(-r s W_{n+2} W_{n+3}-s t W_{n+1} W_{n+2}-r t W_{n+1} W_{n+3}\right)\right)+(n-1) n(n+1)(n+2)(n+3) z^{n-2}\left(W_{n+3}^{2}-\right.$ $\left.\left(s+r^{2}\right) W_{n+2}^{2}-\left(r^{2} s+r t+s^{2}\right) W_{n+1}^{2}\right)+(n-2)(n-1) n(n+1)(n+2) z^{n-3}\left(W_{n+2}^{2}-\left(s+r^{2}\right) W_{n+1}^{2}\right)+$ $(n-3)(n-2)(n-1) n(n+1) z^{n-4} W_{n+1}^{2}$
$+120 t^{2}\left(-W_{2}+r W_{1}+s W_{0}\right)^{2}$
and
$\frac{d^{5}}{d z^{5}} \Gamma(z)=-720 z t^{4}+120 t^{2}\left(s^{2}-r t\right)$
(vii): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{6}=0$ for some $a_{1} \in \mathbb{C}$ then, for $z=a_{1}$, we get

$$
\begin{align*}
\sum_{k=0}^{n} z^{k} W_{k}^{2} & =\frac{\frac{d^{6}}{d z^{6}} \Theta_{1 W}(z)}{\frac{d^{6}}{d z^{6}} \Gamma(z)} \tag{2.7}\\
& =\frac{\frac{d^{6}}{d z^{6}} \Theta_{1 W}(z)}{-720 t^{4}}
\end{align*}
$$

> where
> $\frac{d^{6}}{d z^{6}} \Theta_{1 W}(z)=-(n+1)(n+2)(n+3)(n+4)(n+5)(n+6) z^{n} t^{2}\left(W_{n+3}^{2}+r^{2} W_{n+2}^{2}+s^{2} W_{n+1}^{2}+\right.$ $\left.2\left(-r W_{n+2} W_{n+3}-s W_{n+1} W_{n+3}+r s W_{n+1} W_{n+2}\right)\right)-n(n+1)(n+2)(n+3)(n+4)(n+5) z^{n-1} t\left(r W_{n+3}^{2}+\right.$ $\left.\left(r^{3}+2 r s+t\right) W_{n+2}^{2}+r\left(r t-s^{2}\right) W_{n+1}^{2}+2\left(-\left(s+r^{2}\right) W_{n+3}+\left(s^{2}-t r\right) W_{n+1}\right) W_{n+2}\right)$
$-(n-1) n(n+1)(n+2)(n+3)(n+4) z^{n-2}\left(s W_{n+3}^{2}+r(t+r s) W_{n+2}^{2}+\left(r^{3} t-s^{3}+t^{2}+\right.\right.$ $\left.4 r s t) W_{n+1}^{2}+2\left(-r s W_{n+2} W_{n+3}-s t W_{n+1} W_{n+2}-r t W_{n+1} W_{n+3}\right)\right)+(n-2)(n-1) n(n+1)(n+$ 2) $(n+3) z^{n-3}\left(W_{n+3}^{2}-\left(s+r^{2}\right) W_{n+2}^{2}-\left(r^{2} s+r t+s^{2}\right) W_{n+1}^{2}\right)$
$+(n-3)(n-2)(n-1) n(n+1)(n+2) z^{n-4}\left(W_{n+2}^{2}-\left(s+r^{2}\right) W_{n+1}^{2}\right)+(n-4)(n-3)(n-2)(n-$ 1) $n(n+1) z^{n-5} W_{n+1}^{2}$
and
$\frac{d^{6}}{d z^{6}} \Gamma(z)=-720 t^{4}$
(b):
(i): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right) \neq 0$ then

$$
\begin{equation*}
\sum_{k=0}^{n} z^{k} W_{k+1} W_{k}=\frac{\Theta_{2 W}(z)}{\Gamma(z)} \tag{2.8}
\end{equation*}
$$

where
$\Theta_{2 W}(z)=z^{n+6} \Theta_{13}+z^{n+5} \Theta_{14}+z^{n+4} \Theta_{15}+z^{n+3} \Theta_{16}+z^{n+2} \Theta_{17}+z^{n+1} \Theta_{18}+z^{5} \Theta_{19}+z^{4} \Theta_{20}+$ $z^{3} \Theta_{21}+z^{2} \Theta_{22}+z \Theta_{23}+\Theta_{24}$
$=z^{n+6} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+1}+z^{n+5} t\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right)\left(-s W_{n+3}+\right.$ $\left.t W_{n+2}+r s W_{n+2}\right)+z^{n+4}\left(s(t+r s) W_{n+2}^{2}+r t^{2} W_{n+1}^{2}-s^{2} W_{n+2} W_{n+3}+r^{2} t W_{n+1} W_{n+3}+\left(-r^{3} t+s^{3}-\right.\right.$ $\left.\left.t^{2}-2 r s t\right) W_{n+2} W_{n+1}\right)+z^{n+3}\left(r W_{n+3}^{2}-r^{2} W_{n+2} W_{n+3}+t W_{n+1} W_{n+3}-\left(r^{2} s+r t+s^{2}\right) W_{n+2} W_{n+1}\right)$ $+z^{n+2}\left(W_{n+3}-\left(s+r^{2}\right) W_{n+1}\right) W_{n+2}+z^{n+1} W_{n+1} W_{n+2}+z^{5} t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{0}+z^{4} t\left(W_{2}-\right.$ $\left.r W_{1}-s W_{0}\right)\left(-s W_{2}+(r s+t) W_{1}\right)+z^{3}\left(-s(t+r s) W_{1}^{2}-r t^{2} W_{0}^{2}+s^{2} W_{1} W_{2}-r^{2} t W_{0} W_{2}+\left(r^{3} t-\right.\right.$ $\left.\left.s^{3}+t^{2}+2 r s t\right) W_{0} W_{1}\right)+z^{2}\left(-r W_{2}^{2}+r^{2} W_{1} W_{2}-t W_{0} W_{2}+\left(r^{2} s+r t+s^{2}\right) W_{0} W_{1}\right)+z\left(-W_{2}+\right.$ $\left.\left(r^{2}+s\right) W_{0}\right) W_{1}-W_{0} W_{1}$
(ii): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right) f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with and $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{equation*}
\sum_{k=0}^{n} z^{k} W_{k+1} W_{k}=\frac{\frac{d}{d z} \Theta_{2 W}(z)}{\frac{d}{d z} \Gamma(z)} \tag{2.9}
\end{equation*}
$$

where
$\frac{d}{d z} \Theta_{2 W}(z)=(n+6) z^{n+5} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+1}+(n+5) z^{n+4} t\left(-W_{n+3}+r W_{n+2}+\right.$ $\left.s W_{n+1}\right)\left(-s W_{n+3}+t W_{n+2}+r s W_{n+2}\right)+(n+4) z^{n+3}\left(s(t+r s) W_{n+2}^{2}+r t^{2} W_{n+1}^{2}-s^{2} W_{n+2} W_{n+3}+\right.$ $\left.r^{2} t W_{n+1} W_{n+3}+\left(-r^{3} t+s^{3}-t^{2}-2 r s t\right) W_{n+2} W_{n+1}\right)+(n+3) z^{n+2}\left(r W_{n+3}^{2}-r^{2} W_{n+2} W_{n+3}+\right.$ $\left.t W_{n+1} W_{n+3}-\left(r^{2} s+r t+s^{2}\right) W_{n+2} W_{n+1}\right)$
$+(n+2) z^{n+1}\left(W_{n+3}-\left(s+r^{2}\right) W_{n+1}\right) W_{n+2}+(n+1) z^{n} W_{n+1} W_{n+2}+5 z^{4} t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{0}+$ $4 z^{3} t\left(W_{2}-r W_{1}-s W_{0}\right)\left(-s W_{2}+(r s+t) W_{1}\right)+3 z^{2}\left(-s(t+r s) W_{1}^{2}-r t^{2} W_{0}^{2}+s^{2} W_{1} W_{2}-r^{2} t W_{0} W_{2}+\right.$ $\left.\left(r^{3} t-s^{3}+t^{2}+2 r s t\right) W_{0} W_{1}\right)+2 z\left(-r W_{2}^{2}+r^{2} W_{1} W_{2}-t W_{0} W_{2}+\left(r^{2} s+r t+s^{2}\right) W_{0} W_{1}\right)+\left(-W_{2}+\right.$ $\left.\left(r^{2}+s\right) W_{0}\right) W_{1}$
and

$$
\begin{aligned}
& \frac{d}{d z} \Gamma(z)=-6 z^{5} t^{4}+5 z^{4} t^{2}\left(s^{2}-r t\right)+4 z^{3} t\left(r^{2} t-r s^{2}-s t\right)+3 z^{2}\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)+2 z\left(r^{2} s+\right. \\
& \left.s^{2}+r t\right)+\left(s+r^{2}\right)
\end{aligned}
$$

(iii): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{2} f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{equation*}
\sum_{k=0}^{n} z^{k} W_{k+1} W_{k}=\frac{\frac{d^{2}}{d z^{2}} \Theta_{2 W}(z)}{\frac{d^{2}}{d z^{2}} \Gamma(z)} \tag{2.10}
\end{equation*}
$$

where
$\frac{d^{2}}{d z^{2}} \Theta_{2 W}(z)=(n+5)(n+6) z^{n+4} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+1}+(n+4)(n+5) z^{n+3} t\left(-W_{n+3}+\right.$ $\left.r W_{n+2}+s W_{n+1}\right)\left(-s W_{n+3}+t W_{n+2}+r s W_{n+2}\right)+(n+3)(n+4) z^{n+2}\left(s(t+r s) W_{n+2}^{2}+r t^{2} W_{n+1}^{2}-\right.$ $\left.s^{2} W_{n+2} W_{n+3}+r^{2} t W_{n+1} W_{n+3}+\left(-r^{3} t+s^{3}-t^{2}-2 r s t\right) W_{n+2} W_{n+1}\right)+(n+2)(n+3) z^{n+1}\left(r W_{n+3}^{2}-\right.$ $\left.r^{2} W_{n+2} W_{n+3}+t W_{n+1} W_{n+3}-\left(r^{2} s+r t+s^{2}\right) W_{n+2} W_{n+1}\right)$
$+(n+1)(n+2) z^{n}\left(W_{n+3}-\left(s+r^{2}\right) W_{n+1}\right) W_{n+2}+n(n+1) z^{n-1} W_{n+1} W_{n+2}+20 z^{3} t^{3}\left(W_{2}-r W_{1}-\right.$ $\left.s W_{0}\right) W_{0}+12 z^{2} t\left(W_{2}-r W_{1}-s W_{0}\right)\left(-s W_{2}+(r s+t) W_{1}\right)+6 z\left(-s(t+r s) W_{1}^{2}-r t^{2} W_{0}^{2}+s^{2} W_{1} W_{2}-\right.$ $\left.r^{2} t W_{0} W_{2}+\left(r^{3} t-s^{3}+t^{2}+2 r s t\right) W_{0} W_{1}\right)+2\left(-r W_{2}^{2}+r^{2} W_{1} W_{2}-t W_{0} W_{2}+\left(r^{2} s+r t+s^{2}\right) W_{0} W_{1}\right)$ and
$\frac{d^{2}}{d z^{2}} \Gamma(z)=-30 z^{4} t^{4}+20 z^{3} t^{2}\left(s^{2}-r t\right)+12 z^{2} t\left(r^{2} t-r s^{2}-s t\right)+6 z\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)+$ $2\left(r^{2} s+s^{2}+r t\right)$
(iv): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{3} f(z)=0$
for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{aligned}
\sum_{k=0}^{n} z^{k} W_{k+1} W_{k} & =\frac{\frac{d^{3}}{d z^{3}} \Theta_{2 W}(z)}{\frac{d^{3}}{d z^{3}} \Gamma(z)} \\
& =\frac{\frac{d^{3}}{d z^{3}} \Theta_{2 W}(z)}{-120 z^{3} t^{4}+60 z^{2} t^{2}\left(s^{2}-r t\right)+24 z t\left(r^{2} t-r s^{2}-s t\right)+6\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)}
\end{aligned}
$$

where
$\frac{d^{3}}{d z^{3}} \Theta_{2 W}(z)=(n+4)(n+5)(n+6) z^{n+3} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+1}+(n+3)(n+4)(n+$ 5) $z^{n+2} t\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right)\left(-s W_{n+3}+t W_{n+2}+r s W_{n+2}\right)+(n+2)(n+3)(n+4) z^{n+1}(s(t+$ $\left.r s) W_{n+2}^{2}+r t^{2} W_{n+1}^{2}-s^{2} W_{n+2} W_{n+3}+r^{2} t W_{n+1} W_{n+3}+\left(-r^{3} t+s^{3}-t^{2}-2 r s t\right) W_{n+2} W_{n+1}\right)$ $+(n+1)(n+2)(n+3) z^{n}\left(r W_{n+3}^{2}-r^{2} W_{n+2} W_{n+3}+t W_{n+1} W_{n+3}-\left(r^{2} s+r t+s^{2}\right) W_{n+2} W_{n+1}\right)+$ $n(n+1)(n+2) z^{n-1}\left(W_{n+3}-\left(s+r^{2}\right) W_{n+1}\right) W_{n+2}+(n-1) n(n+1) z^{n-2} W_{n+1} W_{n+2}+60 z^{2} t^{3}\left(W_{2}-\right.$ $\left.r W_{1}-s W_{0}\right) W_{0}+24 z t\left(W_{2}-r W_{1}-s W_{0}\right)\left(-s W_{2}+(r s+t) W_{1}\right)+6\left(-s(t+r s) W_{1}^{2}-r t^{2} W_{0}^{2}+\right.$ $\left.s^{2} W_{1} W_{2}-r^{2} t W_{0} W_{2}+\left(r^{3} t-s^{3}+t^{2}+2 r s t\right) W_{0} W_{1}\right)$
$\frac{d^{3}}{d z^{3}} \Gamma(z)=-120 z^{3} t^{4}+60 z^{2} t^{2}\left(s^{2}-r t\right)+24 z t\left(r^{2} t-r s^{2}-s t\right)+6\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)$
(v): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{4} f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{align*}
\sum_{k=0}^{n} z^{k} W_{k+1} W_{k} & =\frac{\frac{d^{4}}{d z^{4}} \Theta_{2 W}(z)}{\frac{d^{4}}{d z^{4}} \Gamma(z)} \tag{2.12}\\
& =\frac{\frac{d^{4}}{d z^{4}} \Theta_{2 W}(z)}{-360 z^{2} t^{4}+120 z t^{2}\left(s^{2}-r t\right)+24 t\left(r^{2} t-r s^{2}-s t\right)}
\end{align*}
$$

$$
\begin{aligned}
& \text { where } \\
& \frac{d^{4}}{d z^{4}} \Theta_{2 W}(z)=(n+3)(n+4)(n+5)(n+6) z^{n+2} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+1}+(n+ \\
& 2)(n+3)(n+4)(n+5) z^{n+1} t\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right)\left(-s W_{n+3}+t W_{n+2}+r s W_{n+2}\right)+(n+ \\
& 1)(n+2)(n+3)(n+4) z^{n}\left(s(t+r s) W_{n+2}^{2}+r t^{2} W_{n+1}^{2}-s^{2} W_{n+2} W_{n+3}+r^{2} t W_{n+1} W_{n+3}+\left(-r^{3} t+\right.\right. \\
& \left.\left.s^{3}-t^{2}-2 r s t\right) W_{n+2} W_{n+1}\right) \\
& +n(n+1)(n+2)(n+3) z^{n-1}\left(r W_{n+3}^{2}-r^{2} W_{n+2} W_{n+3}+t W_{n+1} W_{n+3}-\left(r^{2} s+r t+s^{2}\right) W_{n+2} W_{n+1}\right)+ \\
& (n-1) n(n+1)(n+2) z^{n-2}\left(W_{n+3}-\left(s+r^{2}\right) W_{n+1}\right) W_{n+2}+(n-2)(n-1) n(n+1) z^{n-3} W_{n+1} W_{n+2}+ \\
& 120 z t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{0}+24 t\left(W_{2}-r W_{1}-s W_{0}\right)\left(-s W_{2}+(r s+t) W_{1}\right) \\
& \text { and } \\
& \frac{d^{4}}{d z^{4}} \Gamma(z)=-360 z^{2} t^{4}+120 z t^{2}\left(s^{2}-r t\right)+24 t\left(r^{2} t-r s^{2}-s t\right)
\end{aligned}
$$

($\mathbf{v i}$): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{5} f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{align*}
\sum_{k=0}^{n} z^{k} W_{k+1} W_{k} & =\frac{\frac{d^{5}}{d z^{5}} \Theta_{2 W}(z)}{\frac{d^{5}}{d z^{5}} \Gamma(z)} \tag{2.13}\\
& =\frac{\frac{d^{5}}{d z^{5}} \Theta_{2 W}(z)}{-720 z t^{4}+120 t^{2}\left(s^{2}-r t\right)}
\end{align*}
$$

where
$\frac{d^{5}}{d z^{5}} \Theta_{2 W}(z)=(n+2)(n+3)(n+4)(n+5)(n+6) z^{n+1} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+1}+(n+$ 1) $(n+2)(n+3)(n+4)(n+5) z^{n} t\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right)\left(-s W_{n+3}+t W_{n+2}+r s W_{n+2}\right)+$ $n(n+1)(n+2)(n+3)(n+4) z^{n-1}\left(s(t+r s) W_{n+2}^{2}+r t^{2} W_{n+1}^{2}-s^{2} W_{n+2} W_{n+3}+r^{2} t W_{n+1} W_{n+3}+\right.$ $\left.\left(-r^{3} t+s^{3}-t^{2}-2 r s t\right) W_{n+2} W_{n+1}\right)$
$+(n-1) n(n+1)(n+2)(n+3) z^{n-2}\left(r W_{n+3}^{2}-r^{2} W_{n+2} W_{n+3}+t W_{n+1} W_{n+3}-\left(r^{2} s+r t+\right.\right.$ $\left.\left.s^{2}\right) W_{n+2} W_{n+1}\right)+(n-2)(n-1) n(n+1)(n+2) z^{n-3}\left(W_{n+3}-\left(s+r^{2}\right) W_{n+1}\right) W_{n+2}+(n-3)(n-$ 2) $(n-1) n(n+1) z^{n-4} W_{n+1} W_{n+2}+120 t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{0}$
and
$\frac{d^{5}}{d z^{5}} \Gamma(z)=-720 z t^{4}+120 t^{2}\left(s^{2}-r t\right)$
(vii): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{6}=0$ for some $a_{1} \in \mathbb{C}$ then, for $z=a_{1}$, we get

$$
\begin{align*}
\sum_{k=0}^{n} z^{k} W_{k+1} W_{k} & =\frac{\frac{d^{6}}{d z^{6}} \Theta_{2 W}(z)}{\frac{d^{6}}{d z^{6}} \Gamma(z)} \tag{2.14}\\
& =\frac{\frac{d^{6}}{d z^{6}} \Theta_{2 W}(z)}{-720 t^{4}}
\end{align*}
$$

where
$\frac{d^{6}}{d z^{6}} \Theta_{2 W}(z)=(n+1)(n+2)(n+3)(n+4)(n+5)(n+6) z^{n} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+1}+$ $n(n+1)(n+2)(n+3)(n+4)(n+5) z^{n-1} t\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right)\left(-s W_{n+3}+t W_{n+2}+\right.$ $\left.r s W_{n+2}\right)+(n-1) n(n+1)(n+2)(n+3)(n+4) z^{n-2}\left(s(t+r s) W_{n+2}^{2}+r t^{2} W_{n+1}^{2}-s^{2} W_{n+2} W_{n+3}+\right.$ $\left.r^{2} t W_{n+1} W_{n+3}+\left(-r^{3} t+s^{3}-t^{2}-2 r s t\right) W_{n+2} W_{n+1}\right)$ $+(n-2)(n-1) n(n+1)(n+2)(n+3) z^{n-3}\left(r W_{n+3}^{2}-r^{2} W_{n+2} W_{n+3}+t W_{n+1} W_{n+3}-\left(r^{2} s+r t+\right.\right.$ $\left.\left.s^{2}\right) W_{n+2} W_{n+1}\right)+(n-3)(n-2)(n-1) n(n+1)(n+2) z^{n-4}\left(W_{n+3}-\left(s+r^{2}\right) W_{n+1}\right) W_{n+2}+(n-$ 4) $(n-3)(n-2)(n-1) n(n+1) z^{n-5} W_{n+1} W_{n+2}$
and
$\frac{d^{6}}{d z^{6}} \Gamma(z)=-720 t^{4}$
(c):
(i): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right) \neq 0$ then

$$
\begin{equation*}
\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}=\frac{\Theta_{3 W}(z)}{\Gamma(z)} \tag{2.15}
\end{equation*}
$$

where
$\Theta_{3 W}(z)=z^{n+6} \Theta_{25}+z^{n+5} \Theta_{26}+z^{n+4} \Theta_{27}+z^{n+3} \Theta_{28}+z^{n+2} \Theta_{29}+z^{n+1} \Theta_{30}+z^{5} \Theta_{31}+z^{4} \Theta_{32}+$ $z^{3} \Theta_{33}+z^{2} \Theta_{34}+z \Theta_{35}+\Theta_{36}=z^{n+6} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+2}+z^{n+5} t\left(r\left(r t-s^{2}\right) W_{n+2}^{2}+\right.$ $\left.t\left(r t-s^{2}\right) W_{n+1}^{2}+\left(s^{2}-r t\right) W_{n+2} W_{n+3}-\left(s^{3}+t^{2}\right) W_{n+1} W_{n+2}+s t W_{n+1} W_{n+3}\right)+z^{n+4}((r t-$ $\left.s^{2}\right) W_{n+3}^{2}+t^{2}\left(r^{2}+s\right) W_{n+1}^{2}+r\left(s^{2}-r t\right) W_{n+2} W_{n+3}+\left(s^{3}-2 r s t-t^{2}\right) W_{n+1} W_{n+3}+s t\left(r^{2}+\right.$ s) $\left.W_{n+2} W_{n+1}\right)$
$+z^{n+3}\left(\left(r^{2}+s\right) W_{n+3}^{2}-s\left(r^{2}+s\right) W_{n+2}^{2}+\left(t-r^{3}\right) W_{n+2} W_{n+3}-s\left(r^{2}+s\right) W_{n+3} W_{n+1}-t\left(r^{2}+\right.\right.$ s) $\left.W_{n+2} W_{n+1}\right)+z^{n+2}\left(s W_{n+2}^{2}+r W_{n+2} W_{n+3}-\left(r^{2}+s\right) W_{n+1} W_{n+3}+t W_{n+1} W_{n+2}\right)+z^{n+1} W_{n+1} W_{n+3}+$ $z^{5} t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{1}+z^{4} t\left(r\left(s^{2}-r t\right) W_{1}^{2}+t W_{0}^{2}\left(s^{2}-r t\right)+\left(r t-s^{2}\right) W_{1} W_{2}-s t W_{0} W_{2}+\right.$ $\left.\left(s^{3}+t^{2}\right) W_{0} W_{1}\right)$
$+z^{3}\left(\left(s^{2}-r t\right) W_{2}^{2}-t^{2}\left(r^{2}+s\right) W_{0}^{2}+r\left(r t-s^{2}\right) W_{1} W_{2}+\left(t^{2}-s^{3}+2 r s t\right) W_{0} W_{2}-s t\left(r^{2}+s\right) W_{0} W_{1}\right)+$ $z^{2}\left(-\left(r^{2}+s\right) W_{2}^{2}+s\left(r^{2}+s\right) W_{1}^{2}+\left(r^{3}-t\right) W_{1} W_{2}+s\left(r^{2}+s\right) W_{0} W_{2}+t\left(r^{2}+s\right) W_{0} W_{1}\right)+z\left(-s W_{1}^{2}-\right.$ $\left.r W_{1} W_{2}+\left(r^{2}+s\right) W_{0} W_{2}-t W_{0} W_{1}\right)-W_{0} W_{2}$
(ii): \quad If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right) f(z)=0$
for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{equation*}
\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}=\frac{\frac{d}{d z} \Theta_{3 W}(z)}{\frac{d}{d z} \Gamma(z)} \tag{2.16}
\end{equation*}
$$

where
$\frac{d}{d z} \Theta_{3 W}(z)=(n+6) z^{n+5} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+2}+(n+5) z^{n+4} t\left(r\left(r t-s^{2}\right) W_{n+2}^{2}+\right.$ $\left.t\left(r t-s^{2}\right) W_{n+1}^{2}+\left(s^{2}-r t\right) W_{n+2} W_{n+3}-\left(s^{3}+t^{2}\right) W_{n+1} W_{n+2}+s t W_{n+1} W_{n+3}\right)+(n+4) z^{n+3}((r t-$ $\left.s^{2}\right) W_{n+3}^{2}+t^{2}\left(r^{2}+s\right) W_{n+1}^{2}+r\left(s^{2}-r t\right) W_{n+2} W_{n+3}+\left(s^{3}-2 r s t-t^{2}\right) W_{n+1} W_{n+3}+s t\left(r^{2}+\right.$ s) $\left.W_{n+2} W_{n+1}\right)$
$+(n+3) z^{n+2}\left(\left(r^{2}+s\right) W_{n+3}^{2}-s\left(r^{2}+s\right) W_{n+2}^{2}+\left(t-r^{3}\right) W_{n+2} W_{n+3}-s\left(r^{2}+s\right) W_{n+3} W_{n+1}-t\left(r^{2}+\right.\right.$ s) $\left.W_{n+2} W_{n+1}\right)+(n+2) z^{n+1}\left(s W_{n+2}^{2}+r W_{n+2} W_{n+3}-\left(r^{2}+s\right) W_{n+1} W_{n+3}+t W_{n+1} W_{n+2}\right)+$ $(n+1) z^{n} W_{n+1} W_{n+3}+5 z^{4} t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{1}+4 z^{3} t\left(r\left(s^{2}-r t\right) W_{1}^{2}+t W_{0}^{2}\left(s^{2}-r t\right)+(r t-\right.$ $\left.\left.s^{2}\right) W_{1} W_{2}-s t W_{0} W_{2}+\left(s^{3}+t^{2}\right) W_{0} W_{1}\right)$
$+3 z^{2}\left(\left(s^{2}-r t\right) W_{2}^{2}-t^{2}\left(r^{2}+s\right) W_{0}^{2}+r\left(r t-s^{2}\right) W_{1} W_{2}+\left(t^{2}-s^{3}+2 r s t\right) W_{0} W_{2}-s t\left(r^{2}+s\right) W_{0} W_{1}\right)+$ $2 z\left(-\left(r^{2}+s\right) W_{2}^{2}+s\left(r^{2}+s\right) W_{1}^{2}+\left(r^{3}-t\right) W_{1} W_{2}+s\left(r^{2}+s\right) W_{0} W_{2}+t\left(r^{2}+s\right) W_{0} W_{1}\right)+\left(-s W_{1}^{2}-\right.$ $\left.r W_{1} W_{2}+\left(r^{2}+s\right) W_{0} W_{2}-t W_{0} W_{1}\right)$
and
$\frac{d}{d z} \Gamma(z)=-6 z^{5} t^{4}+5 z^{4} t^{2}\left(s^{2}-r t\right)+4 z^{3} t\left(r^{2} t-r s^{2}-s t\right)+3 z^{2}\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)+2 z\left(r^{2} s+\right.$ $\left.s^{2}+r t\right)+\left(s+r^{2}\right)$
(iii): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{2} f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{equation*}
\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}=\frac{\frac{d^{2}}{d z^{2}} \Theta_{3 W}(z)}{\frac{d^{2}}{d z^{2}} \Gamma(z)} \tag{2.17}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } \\
& \frac{d^{2}}{d z^{2}} \Theta_{3 W}(z)=(n+5)(n+6) z^{n+4} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+2}+(n+4)(n+5) z^{n+3} t(r(r t- \\
& \left.\left.s^{2}\right) W_{n+2}^{2}+t\left(r t-s^{2}\right) W_{n+1}^{2}+\left(s^{2}-r t\right) W_{n+2} W_{n+3}-\left(s^{3}+t^{2}\right) W_{n+1} W_{n+2}+s t W_{n+1} W_{n+3}\right)+ \\
& (n+3)(n+4) z^{n+2}\left(\left(r t-s^{2}\right) W_{n+3}^{2}+t^{2}\left(r^{2}+s\right) W_{n+1}^{2}+r\left(s^{2}-r t\right) W_{n+2} W_{n+3}+\left(s^{3}-2 r s t-\right.\right. \\
& \left.\left.t^{2}\right) W_{n+1} W_{n+3}+s t\left(r^{2}+s\right) W_{n+2} W_{n+1}\right) \\
& +(n+2)(n+3) z^{n+1}\left(\left(r^{2}+s\right) W_{n+3}^{2}-s\left(r^{2}+s\right) W_{n+2}^{2}+\left(t-r^{3}\right) W_{n+2} W_{n+3}-s\left(r^{2}+s\right) W_{n+3} W_{n+1}-\right. \\
& \left.t\left(r^{2}+s\right) W_{n+2} W_{n+1}\right)+(n+1)(n+2) z^{n}\left(s W_{n+2}^{2}+r W_{n+2} W_{n+3}-\left(r^{2}+s\right) W_{n+1} W_{n+3}+t W_{n+1} W_{n+2}\right)+ \\
& n(n+1) z^{n-1} W_{n+1} W_{n+3}+20 z^{3} t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{1}+12 z^{2} t\left(r\left(s^{2}-r t\right) W_{1}^{2}+t W_{0}^{2}\left(s^{2}-r t\right)+\right. \\
& \left.\left(r t-s^{2}\right) W_{1} W_{2}-s t W_{0} W_{2}+\left(s^{3}+t^{2}\right) W_{0} W_{1}\right) \\
& +6 z\left(\left(s^{2}-r t\right) W_{2}^{2}-t^{2}\left(r^{2}+s\right) W_{0}^{2}+r\left(r t-s^{2}\right) W_{1} W_{2}+\left(t^{2}-s^{3}+2 r s t\right) W_{0} W_{2}-s t\left(r^{2}+s\right) W_{0} W_{1}\right)+ \\
& 2\left(-\left(r^{2}+s\right) W_{2}^{2}+s\left(r^{2}+s\right) W_{1}^{2}+\left(r^{3}-t\right) W_{1} W_{2}+s\left(r^{2}+s\right) W_{0} W_{2}+t\left(r^{2}+s\right) W_{0} W_{1}\right)
\end{aligned}
$$

(iv): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{3} f(z)=0$
for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{aligned}
\sum_{k=0}^{n} z^{k} W_{k+2} W_{k} & =\frac{\frac{d^{3}}{d z^{3}} \Theta_{3 W}(z)}{\frac{d^{3}}{d z^{3}} \Gamma(z)} \\
& =\frac{\frac{d^{3}}{d z^{3}} \Theta_{3 W}(z)}{-120 z^{3} t^{4}+60 z^{2} t^{2}\left(s^{2}-r t\right)+24 z t\left(r^{2} t-r s^{2}-s t\right)+6\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)}
\end{aligned}
$$

where
$\frac{d^{3}}{d z^{3}} \Theta_{3 W}(z)=(n+4)(n+5)(n+6) z^{n+3} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+2}+(n+3)(n+$ $4)(n+5) z^{n+2} t\left(r\left(r t-s^{2}\right) W_{n+2}^{2}+t\left(r t-s^{2}\right) W_{n+1}^{2}+\left(s^{2}-r t\right) W_{n+2} W_{n+3}-\left(s^{3}+t^{2}\right) W_{n+1} W_{n+2}+\right.$ $\left.s t W_{n+1} W_{n+3}\right)+(n+2)(n+3)(n+4) z^{n+1}\left(\left(r t-s^{2}\right) W_{n+3}^{2}+t^{2}\left(r^{2}+s\right) W_{n+1}^{2}+r\left(s^{2}-r t\right) W_{n+2} W_{n+3}+\right.$ $\left.\left(s^{3}-2 r s t-t^{2}\right) W_{n+1} W_{n+3}+s t\left(r^{2}+s\right) W_{n+2} W_{n+1}\right)$
$+(n+1)(n+2)(n+3) z^{n}\left(\left(r^{2}+s\right) W_{n+3}^{2}-s\left(r^{2}+s\right) W_{n+2}^{2}+\left(t-r^{3}\right) W_{n+2} W_{n+3}-s\left(r^{2}+\right.\right.$ s) $\left.W_{n+3} W_{n+1}-t\left(r^{2}+s\right) W_{n+2} W_{n+1}\right)+n(n+1)(n+2) z^{n-1}\left(s W_{n+2}^{2}+r W_{n+2} W_{n+3}-\left(r^{2}+\right.\right.$ s) $\left.W_{n+1} W_{n+3}+t W_{n+1} W_{n+2}\right)+(n-1) n(n+1) z^{n-2} W_{n+1} W_{n+3}$
$+60 z^{2} t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{1}+24 z t\left(r\left(s^{2}-r t\right) W_{1}^{2}+t W_{0}^{2}\left(s^{2}-r t\right)+\left(r t-s^{2}\right) W_{1} W_{2}-s t W_{0} W_{2}+\right.$ $\left.\left(s^{3}+t^{2}\right) W_{0} W_{1}\right)+6\left(\left(s^{2}-r t\right) W_{2}^{2}-t^{2}\left(r^{2}+s\right) W_{0}^{2}+r\left(r t-s^{2}\right) W_{1} W_{2}+\left(t^{2}-s^{3}+2 r s t\right) W_{0} W_{2}-\right.$ $\left.s t\left(r^{2}+s\right) W_{0} W_{1}\right)$
and
$\frac{d^{3}}{d z^{3}} \Gamma(z)=-120 z^{3} t^{4}+60 z^{2} t^{2}\left(s^{2}-r t\right)+24 z t\left(r^{2} t-r s^{2}-s t\right)+6\left(r^{3} t-s^{3}+2 t^{2}+4 r s t\right)$
$(\mathbf{v}): I f \Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{4} f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{aligned}
\sum_{k=0}^{n} z^{k} W_{k+2} W_{k} & =\frac{\frac{d^{4}}{d z^{4}} \Theta_{3 W}(z)}{\frac{d^{4}}{d z^{4}} \Gamma(z)} \\
& =\frac{\frac{d^{4}}{d z^{4}} \Theta_{3 W}(z)}{-360 z^{2} t^{4}+120 z t^{2}\left(s^{2}-r t\right)+24 t\left(r^{2} t-r s^{2}-s t\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \\
& \frac{d^{4}}{d z^{4}} \Theta_{3 W}(z)=(n+3)(n+4)(n+5)(n+6) z^{n+2} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+2}+(n+ \\
& 2)(n+3)(n+4)(n+5) z^{n+1} t\left(r\left(r t-s^{2}\right) W_{n+2}^{2}+t\left(r t-s^{2}\right) W_{n+1}^{2}+\left(s^{2}-r t\right) W_{n+2} W_{n+3}-\left(s^{3}+\right.\right. \\
& \left.\left.t^{2}\right) W_{n+1} W_{n+2}+s t W_{n+1} W_{n+3}\right)
\end{aligned}
$$

$+(n+1)(n+2)(n+3)(n+4) z^{n}\left(\left(r t-s^{2}\right) W_{n+3}^{2}+t^{2}\left(r^{2}+s\right) W_{n+1}^{2}+r\left(s^{2}-r t\right) W_{n+2} W_{n+3}+\left(s^{3}-\right.\right.$
$\left.\left.2 r s t-t^{2}\right) W_{n+1} W_{n+3}+s t\left(r^{2}+s\right) W_{n+2} W_{n+1}\right)+n(n+1)(n+2)(n+3) z^{n-1}\left(\left(r^{2}+s\right) W_{n+3}^{2}-\right.$
$\left.s\left(r^{2}+s\right) W_{n+2}^{2}+\left(t-r^{3}\right) W_{n+2} W_{n+3}-s\left(r^{2}+s\right) W_{n+3} W_{n+1}-t\left(r^{2}+s\right) W_{n+2} W_{n+1}\right)$
$+(n-1) n(n+1)(n+2) z^{n-2}\left(s W_{n+2}^{2}+r W_{n+2} W_{n+3}-\left(r^{2}+s\right) W_{n+1} W_{n+3}+t W_{n+1} W_{n+2}\right)+$
$(n-2)(n-1) n(n+1) z^{n-3} W_{n+1} W_{n+3}+120 z t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{1}+24 t\left(r\left(s^{2}-r t\right) W_{1}^{2}+\right.$
$\left.t W_{0}^{2}\left(s^{2}-r t\right)+\left(r t-s^{2}\right) W_{1} W_{2}-s t W_{0} W_{2}+\left(s^{3}+t^{2}\right) W_{0} W_{1}\right)$
and
$\frac{d^{4}}{d z^{4}} \Gamma(z)=-360 z^{2} t^{4}+120 z t^{2}\left(s^{2}-r t\right)+24 t\left(r^{2} t-r s^{2}-s t\right)$
($\mathbf{v i}$): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{5} f(z)=0$ for some $a_{1} \in \mathbb{C}$ and a function f in z with $f\left(a_{1}\right) \neq 0$ then, for $z=a_{1}$, we get

$$
\begin{align*}
\sum_{k=0}^{n} z^{k} W_{k+2} W_{k} & =\frac{\frac{d^{5}}{d z^{5}} \Theta_{3 W}(z)}{\frac{d^{5}}{d z^{5}} \Gamma(z)} \tag{2.20}\\
& =\frac{\frac{d^{5}}{d z^{5}} \Theta_{3 W}(z)}{-720 z t^{4}+120 t^{2}\left(s^{2}-r t\right)}
\end{align*}
$$

where

$\frac{d^{5}}{d z^{5}} \Theta_{3 W}(z)=(n+2)(n+3)(n+4)(n+5)(n+6) z^{n+1} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+2}+$ $(n+1)(n+2)(n+3)(n+4)(n+5) z^{n} t\left(r\left(r t-s^{2}\right) W_{n+2}^{2}+t\left(r t-s^{2}\right) W_{n+1}^{2}+\left(s^{2}-r t\right) W_{n+2} W_{n+3}-\right.$ $\left.\left(s^{3}+t^{2}\right) W_{n+1} W_{n+2}+s t W_{n+1} W_{n+3}\right)$
$+n(n+1)(n+2)(n+3)(n+4) z^{n-1}\left(\left(r t-s^{2}\right) W_{n+3}^{2}+t^{2}\left(r^{2}+s\right) W_{n+1}^{2}+r\left(s^{2}-r t\right) W_{n+2} W_{n+3}+\right.$ $\left.\left(s^{3}-2 r s t-t^{2}\right) W_{n+1} W_{n+3}+s t\left(r^{2}+s\right) W_{n+2} W_{n+1}\right)+(n-1) n(n+1)(n+2)(n+3) z^{n-2}\left(\left(r^{2}+\right.\right.$ $\left.s) W_{n+3}^{2}-s\left(r^{2}+s\right) W_{n+2}^{2}+\left(t-r^{3}\right) W_{n+2} W_{n+3}-s\left(r^{2}+s\right) W_{n+3} W_{n+1}-t\left(r^{2}+s\right) W_{n+2} W_{n+1}\right)$ $+(n-2)(n-1) n(n+1)(n+2) z^{n-3}\left(s W_{n+2}^{2}+r W_{n+2} W_{n+3}-\left(r^{2}+s\right) W_{n+1} W_{n+3}+t W_{n+1} W_{n+2}\right)+$ $(n-3)(n-2)(n-1) n(n+1) z^{n-4} W_{n+1} W_{n+3}+120 t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{1}$
and
$\frac{d^{5}}{d z^{5}} \Gamma(z)=-720 z t^{4}+120 t^{2}\left(s^{2}-r t\right)$
(vii): If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=\left(z-a_{1}\right)^{6}=0$ for some $a_{1} \in \mathbb{C}$ then, for $z=a_{1}$, we get

$$
\begin{align*}
\sum_{k=0}^{n} z^{k} W_{k+2} W_{k} & =\frac{\frac{d^{6}}{d z^{6}} \Theta_{3 W}(z)}{\frac{d^{6}}{d z^{6}} \Gamma(z)} \tag{2.21}\\
& =\frac{\frac{d^{6}}{d z^{6}} \Theta_{3 W}(z)}{-720 t^{4}}
\end{align*}
$$

where

$$
\begin{aligned}
& \frac{d^{6}}{d z^{6}} \Theta_{3 W}(z)=(n+1)(n+2)(n+3)(n+4)(n+5)(n+6) z^{n} t^{3}\left(-W_{n+3}+r W_{n+2}+s W_{n+1}\right) W_{n+2}+ \\
& n(n+1)(n+2)(n+3)(n+4)(n+5) z^{n-1} t\left(r\left(r t-s^{2}\right) W_{n+2}^{2}+t\left(r t-s^{2}\right) W_{n+1}^{2}+\left(s^{2}-r t\right) W_{n+2} W_{n+3}-\right. \\
& \left.\left(s^{3}+t^{2}\right) W_{n+1} W_{n+2}+s t W_{n+1} W_{n+3}\right) \\
& +(n-1) n(n+1)(n+2)(n+3)(n+4) z^{n-2}\left(\left(r t-s^{2}\right) W_{n+3}^{2}+t^{2}\left(r^{2}+s\right) W_{n+1}^{2}+r\left(s^{2}-r t\right) W_{n+2} W_{n+3}+\right. \\
& \left.\left(s^{3}-2 r s t-t^{2}\right) W_{n+1} W_{n+3}+s t\left(r^{2}+s\right) W_{n+2} W_{n+1}\right)+(n-2)(n-1) n(n+1)(n+2)(n+3) z^{n-3}\left(\left(r^{2}+\right.\right. \\
& \left.s) W_{n+3}^{2}-s\left(r^{2}+s\right) W_{n+2}^{2}+\left(t-r^{3}\right) W_{n+2} W_{n+3}-s\left(r^{2}+s\right) W_{n+3} W_{n+1}-t\left(r^{2}+s\right) W_{n+2} W_{n+1}\right) \\
& +(n-3)(n-2)(n-1) n(n+1)(n+2) z^{n-4}\left(s W_{n+2}^{2}+r W_{n+2} W_{n+3}-\left(r^{2}+s\right) W_{n+1} W_{n+3}+\right. \\
& \left.t W_{n+1} W_{n+2}\right)+(n-4)(n-3)(n-2)(n-1) n(n+1) z^{n-5} W_{n+1} W_{n+3} \\
& a n d \\
& \frac{d^{6}}{d z^{6}} \Gamma(z)=-720 t^{4}
\end{aligned}
$$

Proof.

(a)(i), (b)(i), (c)(i). First, we obtain $\sum_{k=0}^{n} W_{k}^{2}$. Using the recurrence relation

$$
W_{n+3}=r W_{n+2}+s W_{n+1}+t W_{n}
$$

or

$$
t W_{n}=W_{n+3}-r W_{n+2}-s W_{n+1}
$$

i.e.

$$
t^{2} W_{n}^{2}=\left(W_{n+3}-r W_{n+2}-s W_{n+1}\right)^{2}=W_{n+3}^{2}+r^{2} W_{n+2}^{2}+s^{2} W_{n+1}^{2}-2 r W_{n+3} W_{n+2}-2 s W_{n+3} W_{n+1}+2 r s W_{n+2} W_{n+1}
$$

we obtain

$$
\begin{aligned}
t^{2} z^{n} W_{n}^{2}= & z^{n} W_{n+3}^{2}+r^{2} z^{n} W_{n+2}^{2}+s^{2} z^{n} W_{n+1}^{2}-2 r z^{n} W_{n+3} W_{n+2}-2 s z^{n} W_{n+3} W_{n+1}+2 r s z^{n} W_{n+2} W_{n+1} \\
t^{2} z^{n-1} W_{n-1}^{2}= & z^{n-1} W_{n+2}^{2}+r^{2} z^{n-1} W_{n+1}^{2}+s^{2} z^{n-1} W_{n}^{2}-2 r z^{n-1} W_{n+2} W_{n+1} \\
& -2 s z^{n-1} W_{n+2} W_{n}+2 r s z^{n-1} W_{n+1} W_{n} \\
t^{2} z^{n-2} W_{n-2}^{2}= & z^{n-2} W_{n+1}^{2}+r^{2} z^{n-2} W_{n}^{2}+s^{2} z^{n-2} W_{n-1}^{2}-2 r z^{n-2} W_{n+1} W_{n} \\
& -2 s z^{n-2} W_{n+1} W_{n-1}+2 r s z^{n-2} W_{n} W_{n-1} \\
& \vdots \\
t^{2} z^{2} W_{2}^{2}= & z^{2} W_{5}^{2}+r^{2} z^{2} W_{4}^{2}+s^{2} z^{2} W_{3}^{2}-2 r z^{2} W_{5} W_{4}-2 s z^{2} W_{5} W_{3}+2 r s z^{2} W_{4} W_{3} \\
t^{2} z^{1} W_{1}^{2}= & z^{1} W_{4}^{2}+r^{2} z^{1} W_{3}^{2}+s^{2} z^{1} W_{2}^{2}-2 r z^{1} W_{4} W_{3}-2 s z^{1} W_{4} W_{2}+2 r s z^{1} W_{3} W_{2} \\
t^{2} z^{0} W_{0}^{2}= & z^{0} W_{3}^{2}+r^{2} z^{0} W_{2}^{2}+s^{2} z^{0} W_{1}^{2}-2 r z^{0} W_{3} W_{2}-2 s z^{0} W_{3} W_{1}+2 r s z^{0} W_{2} W_{1}
\end{aligned}
$$

If we add the equations side by side, we get

$$
\begin{align*}
t^{2} \sum_{k=0}^{n} z^{k} W_{k}^{2}= & \sum_{k=3}^{n+3} z^{k-3} W_{k}^{2}+r^{2} \sum_{k=2}^{n+2} z^{k-2} W_{k}^{2}+s^{2} \sum_{k=1}^{n+1} z^{k-1} W_{k}^{2} \tag{2.22}\\
& -2 r \sum_{k=2}^{n+2} z^{k-2} W_{k+1} W_{k}-2 s \sum_{k=1}^{n+1} z^{k-1} W_{k+2} W_{k}+2 r s \sum_{k=1}^{n+1} z^{k-1} W_{k+1} W_{k}
\end{align*}
$$

Next we obtain $\sum_{k=0}^{n} W_{k+1} W_{k}$. Multiplying the both side of the recurrence relation

$$
t W_{n}=W_{n+3}-r W_{n+2}-s W_{n+1}
$$

by W_{n+1} we get

$$
t W_{n+1} W_{n}=W_{n+3} W_{n+1}-r W_{n+2} W_{n+1}-s W_{n+1}^{2}
$$

Then using last recurrence relation, we obtain

$$
\begin{aligned}
t z^{n} W_{n+1} W_{n}= & z^{n} W_{n+3} W_{n+1}-r z^{n} W_{n+2} W_{n+1}-s z^{n} W_{n+1}^{2} \\
t z^{n-1} W_{n} W_{n-1}= & z^{n-1} W_{n+2} W_{n}-r z^{n-1} W_{n+1} W_{n}-s z^{n-1} W_{n}^{2} \\
t z^{n-2} W_{n-1} W_{n-2}= & z^{n-2} W_{n+1} W_{n-1}-r z^{n-2} W_{n} W_{n-1}-s z^{n-2} W_{n-1}^{2} \\
& \vdots \\
t z^{2} W_{3} W_{2}= & z^{2} W_{5} W_{3}-r z^{2} W_{4} W_{3}-s z^{2} W_{3}^{2} \\
t z W_{2} W_{1}= & z W_{4} W_{2}-r z W_{3} W_{2}-s z W_{2}^{2} \\
t z^{0} W_{1} W_{0}= & z^{0} W_{3} W_{1}-r z^{0} W_{2} W_{1}-s z^{0} W_{1}^{2}
\end{aligned}
$$

If we add the equations side by side, we get

$$
\begin{equation*}
t \sum_{k=0}^{n} z^{k} W_{k+1} W_{k}=\sum_{k=1}^{n+1} z^{k-1} W_{k+2} W_{k}-r \sum_{k=1}^{n+1} z^{k-1} W_{k+1} W_{k}-s \sum_{k=1}^{n+1} z^{k-1} W_{k}^{2} \tag{2.23}
\end{equation*}
$$

Next we obtain $\sum_{k=2}^{n} W_{k+2} W_{k}$. Multiplying the both side of the recurrence relation

$$
t W_{n}=W_{n+3}-r W_{n+2}-s W_{n+1}
$$

by W_{n+2} we get

$$
t W_{n+2} W_{n}=W_{n+3} W_{n+2}-r W_{n+2}^{2}-s W_{n+2} W_{n+1}
$$

Then using last recurrence relation, we obtain

$$
\begin{aligned}
t z^{n} W_{n+2} W_{n}= & z^{n} W_{n+3} W_{n+2}-r z^{n} W_{n+2}^{2}-s z^{n} W_{n+2} W_{n+1} \\
t z^{n-1} W_{n+1} W_{n-1}= & z^{n-1} W_{n+2} W_{n+1}-r z^{n-1} W_{n+1}^{2}-s z^{n-1} W_{n+1} W_{n} \\
t z^{n-2} W_{n} W_{n-2}= & z^{n-2} W_{n+1} W_{n}-r z^{n-2} W_{n}^{2}-s z^{n-2} W_{n} W_{n-1} \\
& \vdots \\
t z^{2} W_{4} W_{2}= & z^{2} W_{5} W_{4}-r z^{2} W_{4}^{2}-s z^{2} W_{4} W_{3} \\
t z^{1} W_{3} W_{1}= & z^{1} W_{4} W_{3}-r z^{1} W_{3}^{2}-s z^{1} W_{3} W_{2} \\
t z^{0} W_{2} W_{0}= & z^{0} W_{3} W_{2}-r z^{0} W_{2}^{2}-s z^{0} W_{2} W_{1}
\end{aligned}
$$

If we add the equations side by side, we get

$$
\begin{equation*}
t \sum_{k=0}^{n} z^{k} W_{k+2} W_{k}=\sum_{k=2}^{n+2} z^{k-2} W_{k+1} W_{k}-r \sum_{k=2}^{n+2} z^{k-2} W_{k}^{2}-s \sum_{k=1}^{n+1} z^{k-1} W_{k+1} W_{k} \tag{2.24}
\end{equation*}
$$

Solving the system (2.22)-(2.23)-(2.24), the results in (a)(i), (b)(i), (c)(i) follow.
(a):
(ii): We use (2.1). For $z=a_{1}$, the right hand side of the sum formula (2.1) is an indeterminate form. Now, we can use L'Hospital rule. Then we get (ii) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k}^{2}=\left.\frac{\frac{d}{d z} \Theta_{1 W}(z)}{\frac{d}{d z} \Gamma(z)}\right|_{z=a_{1}}
$$

(iii): For $z=a_{1}$, the right hand side of the sum formula (2.1) is an indeterminate form. Now, we can use L'Hospital rule (twice). Then we get (iii) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k}^{2}=\left.\frac{\frac{d^{2}}{d z^{2}} \Theta_{1 W}(z)}{\frac{d^{2}}{d z^{2}} \Gamma(z)}\right|_{z=a_{1}}
$$

(iv): For $z=a_{1}$, the right hand side of the sum formula (2.1) is an indeterminate form. Now, we can use L'Hospital rule (three times). Then we get (iv) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k}^{2}=\left.\frac{\frac{d^{3}}{d z^{3}} \Theta_{1 W}(z)}{\frac{d^{3}}{d z^{3}} \Gamma(z)}\right|_{z=a_{1}}
$$

(v): For $z=a_{1}$, the right hand side of the sum formula (2.1) is an indeterminate form. Now, we can use L'Hospital rule (four times). Then we get (v) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k}^{2}=\left.\frac{\frac{d^{4}}{d z^{4}} \Theta_{1 W}(z)}{\frac{d^{4}}{d z^{4}} \Gamma(z)}\right|_{z=a_{1}}
$$

($\mathbf{v i} \mathbf{i}$: For $z=a_{1}$, the right hand side of the sum formula (2.1) is an indeterminate form. Now, we can use L'Hospital rule (five times). Then we get (vi) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k}^{2}=\left.\frac{\frac{d^{5}}{d z^{5}} \Theta_{1 W}(z)}{\frac{d^{5}}{d z^{5}} \Gamma(z)}\right|_{z=a_{1}}
$$

(vii): For $z=a_{1}$, the right hand side of the sum formula (2.1) is an indeterminate form. Now, we can use L'Hospital rule (six times). Then we get (vii) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k}^{2}=\left.\frac{\frac{d^{6}}{d z^{6}} \Theta_{1 W}(z)}{\frac{d^{6}}{d z^{6}} \Gamma(z)}\right|_{z=a_{1}}
$$

(b):
(ii): We use (2.8). For $z=a_{1}$, the right hand side of the sum formula (2.8) is an indeterminate form. Now, we can use L'Hospital rule. Then we get (ii) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+1} W_{k}=\left.\frac{\frac{d}{d z} \Theta_{2 W}(z)}{\frac{d}{d z} \Gamma(z)}\right|_{z=a_{1}}
$$

(iii): For $z=a_{1}$, the right hand side of the sum formula (2.8) is an indeterminate form. Now, we can use L'Hospital rule (twice). Then we get (iii) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+1} W_{k}=\left.\frac{\frac{d^{2}}{d z^{2}} \Theta_{2 W}(z)}{\frac{d^{2}}{d z^{2}} \Gamma(z)}\right|_{z=a_{1}}
$$

(iv): For $z=a_{1}$, the right hand side of the sum formula (2.8) is an indeterminate form. Now, we can use L'Hospital rule (three times). Then we get (iv) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+1} W_{k}=\left.\frac{\frac{d^{3}}{d z^{3}} \Theta_{2 W}(z)}{\frac{d^{3}}{d z^{3}} \Gamma(z)}\right|_{z=a_{1}}
$$

(v): For $z=a_{1}$, the right hand side of the sum formula (2.8) is an indeterminate form. Now, we can use L'Hospital rule (four times). Then we get (v) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+1} W_{k}=\left.\frac{\frac{d^{4}}{d z^{4}} \Theta_{2 W}(z)}{\frac{d^{4}}{d z^{4}} \Gamma(z)}\right|_{z=a_{1}}
$$

($\mathbf{v i} \mathbf{i}$: For $z=a_{1}$, the right hand side of the sum formula (2.8) is an indeterminate form. Now, we can use L'Hospital rule (five times). Then we get (vi) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+1} W_{k}=\left.\frac{\frac{d^{5}}{d z^{5}} \Theta_{2 W}(z)}{\frac{d^{5}}{d z^{5}} \Gamma(z)}\right|_{z=a_{1}}
$$

(vii): For $z=a_{1}$, the right hand side of the sum formula (2.8) is an indeterminate form. Now, we can use L'Hospital rule (six times). Then we get (vii) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+1} W_{k}=\left.\frac{\frac{d^{6}}{d z^{6}} \Theta_{2 W}(z)}{\frac{d^{6}}{d z^{6}} \Gamma(z)}\right|_{z=a_{1}}
$$

(c):
(ii): We use (2.15). For $z=a_{1}$, the right hand side of the sum formula (2.15) is an indeterminate form. Now, we can use L'Hospital rule. Then we get (ii) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+2} W_{k}=\left.\frac{\frac{d}{d z} \Theta_{3 W}(z)}{\frac{d}{d z} \Gamma(z)}\right|_{z=a_{1}}
$$

(iii): For $z=a_{1}$, the right hand side of the sum formula (2.15) is an indeterminate form. Now, we can use L'Hospital rule (twice). Then we get (iii) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+2} W_{k}=\left.\frac{\frac{d^{2}}{d z^{2}} \Theta_{3 W}(z)}{\frac{d^{2}}{d z^{2}} \Gamma(z)}\right|_{z=a_{1}}
$$

(iv): For $z=a_{1}$, the right hand side of the sum formula (2.15) is an indeterminate form. Now, we can use L'Hospital rule (three times). Then we get (iv) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+2} W_{k}=\left.\frac{\frac{d^{3}}{d z^{3}} \Theta_{3 W}(z)}{\frac{d^{3}}{d z^{3}} \Gamma(z)}\right|_{z=a_{1}}
$$

(v): For $z=a_{1}$, the right hand side of the sum formula (2.15) is an indeterminate form. Now, we can use L'Hospital rule (four times). Then we get (v) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+2} W_{k}=\left.\frac{\frac{d^{4}}{d z^{4}} \Theta_{3 W}(z)}{\frac{d^{4}}{d z^{4}} \Gamma(z)}\right|_{z=a_{1}} .
$$

(vi): For $z=a_{1}$, the right hand side of the sum formula (2.15) is an indeterminate form. Now, we can use L'Hospital rule (five times). Then we get (vi) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+2} W_{k}=\left.\frac{\frac{d^{5}}{d z^{5}} \Theta_{3 W}(z)}{\frac{d^{5}}{d z^{5}} \Gamma(z)}\right|_{z=a_{1}}
$$

(vii): For $z=a_{1}$, the right hand side of the sum formula (2.15) is an indeterminate form. Now, we can use L'Hospital rule (six times). Then we get (vii) by using

$$
\sum_{k=0}^{n} a_{1}^{k} W_{k+2} W_{k}=\left.\frac{\frac{d^{6}}{d z^{6}} \Theta_{3 W}(z)}{\frac{d^{6}}{d z^{6}} \Gamma(z)}\right|_{z=a_{1}}
$$

REmARK 2.2. According to roots of $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=0$, the sum formulas $\sum_{k=0}^{n} z^{k} W_{k}^{2}, \sum_{k=0}^{n} z^{k} W_{k+1} W_{k}$ and $\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}$ can be evaluated by using Theorem 2.1. For example,

- If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=u\left(z-a_{1}\right)\left(z-a_{2}\right)\left(z-a_{3}\right)\left(z-a_{4}\right)(z-$ $\left.a_{5}\right)\left(z-a_{6}\right)=0$ for some $u, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \in \mathbb{C}$ with $u \neq 0$ and $a_{1} \neq a_{2} \neq a_{3} \neq a_{4} \neq a_{5} \neq a_{6}$, i.e., $z=a_{1}$ or $z=a_{2}$ or $z=a_{3}$ or $z=a_{4}$ or $z=a_{5}$ or $z=a_{6}$ then we use (2.2) in (a)(ii), (2.9) in (b)(ii) and (2.16) in (c)(ii) to calculate $\sum_{k=0}^{n} z^{k} W_{k}^{2}, \sum_{k=0}^{n} z^{k} W_{k+1} W_{k}$ and $\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}$, respectively.
- If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=u\left(z-a_{1}\right)^{3}\left(z-a_{2}\right)^{2}\left(z-a_{3}\right)=0$ for some $u, a_{1}, a_{2}, a_{3} \in \mathbb{C}$ with $u \neq 0$ and $a_{1} \neq a_{2} \neq a_{3}$, i.e., $z=a_{1}$ or $z=a_{2}$ or $z=a_{3}$ then
- if $z=a_{1}$ then we use (2.4) in (a)(iv), (2.11) in (b)(iv) and (2.18) in (c)(iv) to calculate $\sum_{k=0}^{n} z^{k} W_{k}^{2}, \sum_{k=0}^{n} z^{k} W_{k+1} W_{k}$ and $\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}$, respectively,
- if $z=a_{2}$ then we use (2.3) in (a)(iii), (2.10) in (b)(iii) and (2.17) in (c)(iii) to calculate $\sum_{k=0}^{n} z^{k} W_{k}^{2}, \sum_{k=0}^{n} z^{k} W_{k+1} W_{k}$ and $\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}$, respectively,
- if $z=a_{3}$ then we use (2.2) in (a)(ii), (2.9) in (b)(ii) and (2.16) in (c)(ii) to calculate $\sum_{k=0}^{n} z^{k} W_{k}^{2}, \sum_{k=0}^{n} z^{k} W_{k+1} W_{k}$ and $\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}$, respectively.
- If $\Gamma(z)=\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)=u\left(z-a_{1}\right)^{4}\left(z-a_{2}\right)^{2}=0$ for some $u, a_{1}, a_{2} \in \mathbb{C}$ with $u \neq 0$ and $a_{1} \neq a_{2}$, i.e., $z=a_{1}$ or $z=a_{2}$ then
- if $z=a_{1}$ then we use (2.5) in (a)(v), (2.12) in (b)(v) and (2.19) in (c)(v) to calculate $\sum_{k=0}^{n} z^{k} W_{k}^{2}, \sum_{k=0}^{n} z^{k} W_{k+1} W_{k}$ and $\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}$, respectively,
- if $z=a_{2}$ then we use (2.3) in (a)(iii), (2.10) in (b)(iii) and (2.17) in (c)(iii) to calculate $\sum_{k=0}^{n} z^{k} W_{k}^{2}, \sum_{k=0}^{n} z^{k} W_{k+1} W_{k}$ and $\sum_{k=0}^{n} z^{k} W_{k+2} W_{k}$, respectively,

3. Generating Functions

In this section, we present the closed forms of formulas of generating functions $\sum_{n=0}^{\infty} W_{n}^{2} z^{n}, \sum_{n=0}^{\infty} W_{n+1} W_{n} z^{n}$ and $\sum_{n=0}^{\infty} W_{n+2} W_{n} z^{n}$ for the generalized Tribonacci polynomials.

Theorem 3.1. Assume that $|z|<\min \left\{|\alpha|^{-2},|\beta|^{-2},|\gamma|^{-2},|\alpha \beta|^{-1},|\alpha \gamma|^{-1},|\beta \gamma|^{-1}\right\}$. Then
(a): The ordinary generating function $\sum_{n=0}^{\infty} W_{n}^{2} z^{n}$ of the sequence $\left\{W_{n}^{2}\right\}$ is given by

$$
\sum_{n=0}^{\infty} W_{n}^{2} z^{n}=\frac{\Psi_{1}(z)}{\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)}
$$

where

$$
\Psi_{1}(z)=z^{5} \Theta_{7}+z^{4} \Theta_{8}+z^{3} \Theta_{9}+z^{2} \Theta_{10}+z \Theta_{11}+\Theta_{12}
$$

$$
\begin{aligned}
& \quad=z^{5} t^{2}\left(-W_{2}+r W_{1}+s W_{0}\right)^{2}+z^{4} t\left(r W_{2}^{2}+\left(t+2 r s+r^{3}\right) W_{1}^{2}+r\left(r t-s^{2}\right) W_{0}^{2}-2\left(s+r^{2}\right) W_{1} W_{2}-\right. \\
& \left.2\left(r t-s^{2}\right) W_{0} W_{1}\right)+z^{3}\left(s W_{2}^{2}+r(t+r s) W_{1}^{2}+\left(r^{3} t-s^{3}+t^{2}+4 r s t\right) W_{0}^{2}-2 r s W_{1} W_{2}-2 r t W_{0} W_{2}-\right. \\
& \left.2 s t W_{0} W_{1}\right)+z^{2}\left(-W_{2}^{2}+\left(r^{2}+s\right) W_{1}^{2}+s\left(s+r^{2}\right) W_{0}^{2}+r t W_{0}^{2}\right)+z\left(-W_{1}^{2}+\left(r^{2}+s\right) W_{0}^{2}\right)-W_{0}^{2}
\end{aligned}
$$

(b): The ordinary generating function $\sum_{n=0}^{\infty} W_{n+1} W_{n} z^{n}$ of the sequence $\left\{W_{n+1} W_{n}\right\}$ is given by

$$
\sum_{n=0}^{\infty} W_{n+1} W_{n} z^{n}=\frac{\Psi_{2}(z)}{\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)}
$$

where

$$
\begin{aligned}
& \quad \Psi_{2}(z)=z^{5} \Theta_{19}+z^{4} \Theta_{20}+z^{3} \Theta_{21}+z^{2} \Theta_{22}+z \Theta_{23}+\Theta_{24} \\
& \quad=z^{5} t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{0}+z^{4} t\left(W_{2}-r W_{1}-s W_{0}\right)\left(-s W_{2}+(r s+t) W_{1}\right)+z^{3}\left(-s(t+r s) W_{1}^{2}-\right. \\
& \left.r t^{2} W_{0}^{2}+s^{2} W_{1} W_{2}-r^{2} t W_{0} W_{2}+\left(r^{3} t-s^{3}+t^{2}+2 r s t\right) W_{0} W_{1}\right)+z^{2}\left(-r W_{2}^{2}+r^{2} W_{1} W_{2}-t W_{0} W_{2}+\right. \\
& \left.\left(r^{2} s+r t+s^{2}\right) W_{0} W_{1}\right)+z\left(-W_{2}+\left(r^{2}+s\right) W_{0}\right) W_{1}-W_{0} W_{1}
\end{aligned}
$$

(c): The ordinary generating function $\sum_{n=0}^{\infty} W_{n+2} W_{n} z^{n}$ of the sequence $\left\{W_{n+2} W_{n}\right\}$ is given by

$$
\sum_{n=0}^{\infty} W_{n+2} W_{n} z^{n}=\frac{\Psi_{3}(z)}{\left(-t^{2} z^{3}+s z+r t z^{2}+1\right)\left(r^{2} z-s^{2} z^{2}+t^{2} z^{3}+2 s z+2 r t z^{2}-1\right)}
$$

where

$$
\begin{aligned}
& \quad \Psi_{3}(z)=z^{5} \Theta_{31}+z^{4} \Theta_{32}+z^{3} \Theta_{33}+z^{2} \Theta_{34}+z \Theta_{35}+\Theta_{36} \\
& \quad=z^{5} t^{3}\left(W_{2}-r W_{1}-s W_{0}\right) W_{1}+z^{4} t\left(r\left(s^{2}-r t\right) W_{1}^{2}+t W_{0}^{2}\left(s^{2}-r t\right)+\left(r t-s^{2}\right) W_{1} W_{2}-s t W_{0} W_{2}+\right. \\
& \left.\left(s^{3}+t^{2}\right) W_{0} W_{1}\right)+z^{3}\left(\left(s^{2}-r t\right) W_{2}^{2}-t^{2}\left(r^{2}+s\right) W_{0}^{2}+r\left(r t-s^{2}\right) W_{1} W_{2}+\left(t^{2}-s^{3}+2 r s t\right) W_{0} W_{2}-s t\left(r^{2}+\right.\right. \\
& \left.s) W_{0} W_{1}\right)+z^{2}\left(-\left(r^{2}+s\right) W_{2}^{2}+s\left(r^{2}+s\right) W_{1}^{2}+\left(r^{3}-t\right) W_{1} W_{2}+s\left(r^{2}+s\right) W_{0} W_{2}+t\left(r^{2}+s\right) W_{0} W_{1}\right)+ \\
& z\left(-s W_{1}^{2}-r W_{1} W_{2}+\left(r^{2}+s\right) W_{0} W_{2}-t W_{0} W_{1}\right)-W_{0} W_{2}
\end{aligned}
$$

Proof. Use Theorem 2.1 (a)(i), (b)(i), (c)(i) and Theorem 1.2.

References

[1] Cerda-Moralez, G., On Third-Order Jacobsthal Polynomials and Their Properties, Miskolc Mathematical Notes, Vol. 22(1), 123-132, 2021. DOI: 10.18514/MMN. 2021.3227
[2] Merzouka, H., Boussayoudb, A., Chelghamc, M., Generating Functions of Generalized Tribonacci and Tricobsthal Polynomials, Montes Taurus Journal of Pure and Applied Mathematics, 2(2), 7-37, 2020.
[3] Özkan, E., Altun, İ., (2019) Generalized Lucas polynomials and relationships between the Fibonacci polynomials and Lucas polynomials, Communications in Algebra, 47(10), 2019. DOI: 10.1080/00927872.2019.1576186
[4] Ricci, P.E., A Note on Q-matrices and Higher Order Fibonacci Polynomials, Notes on Number Theory and Discrete Mathematics, 27 (1), 2021, 91-100. DOI: 10.7546/nntdm.2021.27.1.91-100
[5] Soykan, Y., Generalized Tribonacci Polynomials, Earthline Journal of Mathematical Sciences, 13(1), 1-120, 2023. https://doi.org/10.34198/ejms. 13123.1120

[^0]: Article History
 Received : 04 October 2022; Revised : 22 October 2023; Accepted : 06 November 2023; Published : 26 December 2023
 To cite this paper
 Yüksel Soykan (2023). Sums and Generating Functions of Squares of Generalized Tribonacci Polynomials: Closed Formulas of $\sum_{k=0}^{n} z^{k} W_{k}^{2}$ and $\sum_{n=0}^{\infty} W_{n}^{2} z^{n}$. International Journal of Mathematics, Statistics and Operations Research. 3(2), 281-300.

